Evidence Accumulation Clustering with Possibilitic Fuzzy C-Means base clustering approach to disease diagnosis
نویسندگان
چکیده
Traditionally, supervised machine learning methods are the first choice for tasks involving classification of data. This study provides a non-conventional hybrid alternative technique (pEAC) that blends the Possibilistic Fuzzy CMeans (PFCM) as base cluster generating algorithm into the ‘standard’ Evidence Accumulation Clustering (EAC) clustering method. The PFCM coalesces the separate properties of the Possibilistic C-Means (PCM) and Fuzzy C-Means (FCM) algorithms into a sophisticated clustering algorithm. Notwithstanding the tremendous capabilities offered by this hybrid technique, in terms of structure, it resembles the hEAC and fEAC ensemble clustering techniques that are realised by integrating the K-Means and FCM clustering algorithms into the EAC technique. To validate the new technique’s effectiveness, its performance on both synthetic and real medical datasets was evaluated alongside individual runs of well-known clustering methods, other unsupervised ensemble clustering techniques and some supervised machine learning methods. Our results show that the proposed pEAC technique outperformed the individual runs of the clustering methods and other unsupervised ensemble techniques in terms accuracy for the diagnosis of hepatitis, cardiovascular, breast cancer, and diabetes ailments that were used in the experiments. Remarkably, compared alongside selected supervised machine learning classification models, our proposed pEAC ensemble technique exhibits better diagnosing accuracy for the two breast cancer datasets that were used, which suggests that even at the cost of none labelling of data, the proposed technique offers efficient medical data classification.
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کامل